17.6 C
Tuesday, September 26, 2023
NewsNew breakthrough: 3D printed ferroelectric materials eliminate harmful bacteria, including E coli

New breakthrough: 3D printed ferroelectric materials eliminate harmful bacteria, including E coli

DISCLAIMER: Information and opinions reproduced in the articles are the ones of those stating them and it is their own responsibility. Publication in The European Times does not automatically means endorsement of the view, but the right to express it.

DISCLAIMER TRANSLATIONS: All articles in this site are published in English. The translated versions are done through an automated process known as neural translations. If in doubt, always refer to the original article. Thank you for understanding.

The European Times News aims to cover news that matter to increase the awareness of citizens all around geographical Europe.

More from the author

Persecuted christians - Conference at the European Parliament about the persecution of Christians in Sub-Saharan Africa (Credit: MEP Bert-Jan Ruissen)

Break the silence on persecuted Christians

MEP Bert-Jan Ruissen held a conference and exhibition at the European Parliament to denounce the silence surrounding the suffering of persecuted Christians worldwide. The EU must take stronger action against violations of freedom of religion, especially in Africa where lives are lost due to this silence.

New fabrication technique gives materials antimicrobial properties, with scope to improve safety of implants including heart valves and stents.

A new way of using 3D printing to create infection-fighting materials for use as medical implants has been revealed in a new research paper.

An impression of bacteria being destroyed by the new ferroelectric composite material. Image credit: University of Bath

Engineers at the University of Bath, working with colleagues at the University of Ulster, have for the first time successfully created a new kind of ferroelectric composite material with antimicrobial properties using a novel multi-material 3D printing process.

They say the use of electrically responsive ferroelectric materials gives the implants infection-fighting properties, making them ideal for biomedical applications, such as heart valves, stents, and bone implants reducing the risk of infection for patients.

While commonplace, all biomedical implants pose some level of risk as materials can carry surface bio-contaminants that can lead to infection. Reducing this risk could be beneficial both to patients in the form of improved outcomes, and to healthcare providers thanks to reduced costs incurred by ongoing treatment.

The team has previously used this 3D printing technique for the fabrication of three-dimensional scaffolds for bone tissue engineering.

Dr Hamideh Khanbareh, a lecturer in materials and structures in Bath’s Department of Mechanical Engineering, is lead author of the research. She says that the development has the scope for wide-ranging applications.

She said: “Biomedical implants that can fight infection or dangerous bacteria such as E. coli could present significant benefits to patients and to healthcare providers.

“Our research indicates that the ferroelectric composite materials we have created have a great potential as antimicrobial materials and surfaces. This is a potentially game-changing development that we would be keen to develop further through collaboration with medical researchers or healthcare providers.”

The innovation comes thanks to ferroelectricity, a characteristic of certain polar materials that generate electrical surface charge in response to a change in mechanical energy or temperature. In ferroelectric films and implants, this electrical charge leads to the formation of free radicals known as reactive oxygen species (ROS), which selectively eradicate bacteria.

This comes about through the micro-electrolysis of water molecules on a surface of polarised ferroelectric composite material.

The composite material used to harness this phenomenon is made by embedding ferroelectric barium calcium zirconate titanate (BCZT) micro-particles in polycaprolactone (PCL) a biodegradable polymer widely used in biomedical applications. The mixture of the ferroelectric particles and polymer is then fed into a 3D bioprinter to create a specific porous ‘scaffold’ shape designed to have a high surface area to promote ROS formation.

Testing showed that even when contaminated with high concentrations of aggressive E. coli bacteria, the composite can completely eradicate the bacteria cells without external intervention, killing 70% within just 15 minutes.

Source: University of Bath

Source link

- Advertisement -
- Advertisement -
- Advertisement -
- Advertisement -

Must read

Latest articles

- Advertisement -