3.3 C
Brussels
Sunday, December 22, 2024
NewsA Unique Catalyst for Breaking Down Plastics Paves the Way for Plastic...

A Unique Catalyst for Breaking Down Plastics Paves the Way for Plastic Upcycling

DISCLAIMER: Information and opinions reproduced in the articles are the ones of those stating them and it is their own responsibility. Publication in The European Times does not automatically means endorsement of the view, but the right to express it.

DISCLAIMER TRANSLATIONS: All articles in this site are published in English. The translated versions are done through an automated process known as neural translations. If in doubt, always refer to the original article. Thank you for understanding.

Unique Plastic Upcycling Catalyst

Visual of two variations of the catalyst, with a segment of the shell removed to show the interior. The white sphere represents the silica shell, the holes are the pores. The bright green spheres represent the catalytic sites, the ones on the left are much smaller than the ones on the right. The longer red strings represent the polymer chains, and the shorter strings are products after catalysis. All shorter strings are similar in size, representing the consistent selectivity across catalyst variations. Additionally, there are more smaller chains produced by the smaller catalyst sites because the reaction occurs more quickly. Credit: Image courtesy of Argonne National Laboratory, U.S. Department of Energy


Plastic upcycling technologies are being advanced by a recently developed catalyst for breaking down plastics. A team of scientists lead by Ames Laboratory scientists discovered the first processive inorganic catalyst in 2020 to deconstruct polyolefin plastics into molecules that can be used to create more valuable products. The team has now developed and validated a strategy to speed up the transformation without sacrificing desirable products.

The catalyst was originally designed by Wenyu Huang, a scientist at Ames Laboratory. It consists of platinum particles supported on a solid silica core and surrounded by a silica shell with uniform pores that provide access to catalytic sites. The total amount of platinum needed is quite small, which is important because of platinum’s high cost and limited supply. During deconstruction experiments, the long polymer chains thread into the pores and contact the catalytic sites, and then the chains are broken into smaller-sized pieces that are no longer plastic material (see image above for more details).


According to Aaron Sadow, a scientist at Ames Lab and director of the Institute for Cooperative Upcycling of Plastics (iCOUP), the team crafted three variations of the catalyst. Each variation had identically sized cores and porous shells, but varying diameters of platinum particles, from 1.7 to 2.9 to 5.0 nm.

The researchers hypothesized that the differences in platinum particle size would affect the lengths of the product chains, so large platinum particles would make longer chains and small ones would make shorter chains. However, the team discovered that the lengths of the product chains were the same size for all three catalysts.

“In the literature, the selectivity for carbon-carbon bond cleavage reactions usually varies with the size of the platinum nanoparticles. By placing platinum at the bottom of the pores, we saw something quite unique,” said Sadow.



Instead, the rate at which the chains were broken into smaller molecules was different for the three catalysts. The larger platinum particles reacted with the long polymer chain more slowly while the smaller ones reacted more quickly. This increased rate could result from the higher percentage of edge and corner platinum sites on the surfaces of the smaller nanoparticles. These sites are more active in cleaving the polymer chain than the platinum located in the faces of the particles.

According to Sadow, the results are important because they show that activity can be adjusted independently from the selectivity in these reactions. “Now, we are confident that we can make a more active catalyst that would chew up the polymer even faster, while using catalyst structural parameters to dial in specific product chain lengths,” he said.

Huang explained that this type of larger molecule reactivity in porous catalysts in general are not widely studied. So, the research is important for understanding the fundamental science as well as how it performs for upcycling plastics.

“We really need to further understand the system because we’re still learning new things every day. We are exploring other parameters that we can tune to further increase the production rate and shift the product distribution,” said Huang. “So there are a lot of new things in our list waiting for us to discover.”


Reference: “Size-Controlled Nanoparticles Embedded in a Mesoporous Architecture Leading to Efficient and Selective Hydrogenolysis of Polyolefins” by Xun Wu, Akalanka Tennakoon, Ryan Yappert, Michaela Esveld, Magali S. Ferrandon, Ryan A. Hackler, Anne M. LaPointe, Andreas Heyden, Massimiliano Delferro, Baron Peters, Aaron D. Sadow and Wenyu Huang, 23 February 2022, Journal of the American Chemical Society.
DOI: 10.1021/jacs.1c11694

The research was conducted by the Institute for Cooperative Upcycling of Plastics (iCOUP), led by Ames Laboratory. iCOUP is an Energy Frontier Research Center consisting of scientists from Ames Laboratory, Argonne National Laboratory, UC Santa Barbara, University of South Carolina, Cornell University, Northwestern University, and the University of Illinois Urbana-Champaign.

- Advertisement -

More from the author

- EXCLUSIVE CONTENT -spot_img
- Advertisement -
- Advertisement -
- Advertisement -spot_img
- Advertisement -

Must read

Latest articles

- Advertisement -